Smart Radar

Cílem projektu ultrazvukového radaru je detekce a měření vzdálenosti objektů, což zahrnuje překážky, terén nebo jiné prvky v prostředí. Tento typ technologie se často používá ke zlepšení bezpečnosti, například v automobilovém průmyslu, kde může přispět k bezpečnému parkování a detekci překážek. Dále se ultrazvukové radary využívají k monitorování přírodních jevů v oblastech jako je geologie a ekologie, kde pomáhají sledovat změny v terénu nebo vodních zdrojích.

Projekt také usiluje o vývoj a inovaci technologií ultrazvukového radaru, přičemž se zaměřuje na zlepšení přesnosti, dosahu a detekce schopností v různých podmínkách. Součástí projektu může být rovněž základní výzkum a vzdělávání v oblasti fyziky a inženýrství, což podporuje širší povědomí o této technologii a její aplikaci.

Kód pro arduino:

// Includes the Servo library
#include <Servo.h>.
// Defines Tirg and Echo pins of the Ultrasonic Sensor
const int trigPin = 10;
const int echoPin = 11;
// Variables for the duration and the distance
long duration;
int distance;
Servo myServo;  // Creates a servo object for controlling the servo motor
void setup() {
  pinMode(trigPin, OUTPUT);  // Sets the trigPin as an Output
  pinMode(echoPin, INPUT);   // Sets the echoPin as an Input
  Serial.begin(9600);
  myServo.attach(12);  // Defines on which pin is the servo motor attached
}
void loop() {
  // rotates the servo motor from 15 to 165 degrees
  for (int i = 15; i <= 165; i++) {
    myServo.write(i);
    delay(30);
    distance = calculateDistance();  // Calls a function for calculating the distance measured by the Ultrasonic sensor for each degree

    Serial.print(i);         // Sends the current degree into the Serial Port
    Serial.print(",");       // Sends addition character right next to the previous value needed later in the Processing IDE for indexing
    Serial.print(distance);  // Sends the distance value into the Serial Port
    Serial.print(".");       // Sends addition character right next to the previous value needed later in the Processing IDE for indexing
  }
  // Repeats the previous lines from 165 to 15 degrees
  for (int i = 165; i > 15; i--) {
    myServo.write(i);
    delay(30);
    distance = calculateDistance();
    Serial.print(i);
    Serial.print(",");
    Serial.print(distance);
    Serial.print(".");
  }
}
// Function for calculating the distance measured by the Ultrasonic sensor
int calculateDistance() {

  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  // Sets the trigPin on HIGH state for 10 micro seconds
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH);  // Reads the echoPin, returns the sound wave travel time in microseconds
  distance = duration * 0.034 / 2;
  return distance;
}

Procesní kód pro PC:

import processing.serial.*; // imports library for serial communication
import java.awt.event.KeyEvent; // imports library for reading the data from the serial port
import java.io.IOException;
Serial myPort; // defines Object Serial
// defubes variables
String angle="";
String distance="";
String data="";
String noObject;
float pixsDistance;
int iAngle, iDistance;
int index1=0;
int index2=0;
PFont orcFont;
void setup() {
  
 size (1200, 700); // ***CHANGE THIS TO YOUR SCREEN RESOLUTION***
 smooth();
 myPort = new Serial(this,"COM5", 9600); // starts the serial communication
 myPort.bufferUntil('.'); // reads the data from the serial port up to the character '.'. So actually it reads this: angle,distance.
}
void draw() {
  
  fill(98,245,31);
  // simulating motion blur and slow fade of the moving line
  noStroke();
  fill(0,4); 
  rect(0, 0, width, height-height*0.065); 
  
  fill(98,245,31); // green color
  // calls the functions for drawing the radar
  drawRadar(); 
  drawLine();
  drawObject();
  drawText();
}
void serialEvent (Serial myPort) { // starts reading data from the Serial Port
  // reads the data from the Serial Port up to the character '.' and puts it into the String variable "data".
  data = myPort.readStringUntil('.');
  data = data.substring(0,data.length()-1);
  
  index1 = data.indexOf(","); // find the character ',' and puts it into the variable "index1"
  angle= data.substring(0, index1); // read the data from position "0" to position of the variable index1 or thats the value of the angle the Arduino Board sent into the Serial Port
  distance= data.substring(index1+1, data.length()); // read the data from position "index1" to the end of the data pr thats the value of the distance
  
  // converts the String variables into Integer
  iAngle = int(angle);
  iDistance = int(distance);
}
void drawRadar() {
  pushMatrix();
  translate(width/2,height-height*0.074); // moves the starting coordinats to new location
  noFill();
  strokeWeight(2);
  stroke(98,245,31);
  // draws the arc lines
  arc(0,0,(width-width*0.0625),(width-width*0.0625),PI,TWO_PI);
  arc(0,0,(width-width*0.27),(width-width*0.27),PI,TWO_PI);
  arc(0,0,(width-width*0.479),(width-width*0.479),PI,TWO_PI);
  arc(0,0,(width-width*0.687),(width-width*0.687),PI,TWO_PI);
  // draws the angle lines
  line(-width/2,0,width/2,0);
  line(0,0,(-width/2)*cos(radians(30)),(-width/2)*sin(radians(30)));
  line(0,0,(-width/2)*cos(radians(60)),(-width/2)*sin(radians(60)));
  line(0,0,(-width/2)*cos(radians(90)),(-width/2)*sin(radians(90)));
  line(0,0,(-width/2)*cos(radians(120)),(-width/2)*sin(radians(120)));
  line(0,0,(-width/2)*cos(radians(150)),(-width/2)*sin(radians(150)));
  line((-width/2)*cos(radians(30)),0,width/2,0);
  popMatrix();
}
void drawObject() {
  pushMatrix();
  translate(width/2,height-height*0.074); // moves the starting coordinats to new location
  strokeWeight(9);
  stroke(255,10,10); // red color
  pixsDistance = iDistance*((height-height*0.1666)*0.025); // covers the distance from the sensor from cm to pixels
  // limiting the range to 40 cms
  if(iDistance<40){
    // draws the object according to the angle and the distance
  line(pixsDistance*cos(radians(iAngle)),-pixsDistance*sin(radians(iAngle)),(width-width*0.505)*cos(radians(iAngle)),-(width-width*0.505)*sin(radians(iAngle)));
  }
  popMatrix();
}
void drawLine() {
  pushMatrix();
  strokeWeight(9);
  stroke(30,250,60);
  translate(width/2,height-height*0.074); // moves the starting coordinats to new location
  line(0,0,(height-height*0.12)*cos(radians(iAngle)),-(height-height*0.12)*sin(radians(iAngle))); // draws the line according to the angle
  popMatrix();
}
void drawText() { // draws the texts on the screen
  
  pushMatrix();
  if(iDistance>40) {
  noObject = "Out of Range";
  }
  else {
  noObject = "In Range";
  }
  fill(0,0,0);
  noStroke();
  rect(0, height-height*0.0648, width, height);
  fill(98,245,31);
  textSize(25);
  
  text("10cm",width-width*0.3854,height-height*0.0833);
  text("20cm",width-width*0.281,height-height*0.0833);
  text("30cm",width-width*0.177,height-height*0.0833);
  text("40cm",width-width*0.0729,height-height*0.0833);
  textSize(40);
  text("SciCraft ", width-width*0.875, height-height*0.0277);
  text("Angle: " + iAngle +" °", width-width*0.48, height-height*0.0277);
  text("Distance: ", width-width*0.26, height-height*0.0277);
  if(iDistance<40) {
  text("        " + iDistance +" cm", width-width*0.225, height-height*0.0277);
  }
  textSize(25);
  fill(98,245,60);
  translate((width-width*0.4994)+width/2*cos(radians(30)),(height-height*0.0907)-width/2*sin(radians(30)));
  rotate(-radians(-60));
  text("30°",0,0);
  resetMatrix();
  translate((width-width*0.503)+width/2*cos(radians(60)),(height-height*0.0888)-width/2*sin(radians(60)));
  rotate(-radians(-30));
  text("60°",0,0);
  resetMatrix();
  translate((width-width*0.507)+width/2*cos(radians(90)),(height-height*0.0833)-width/2*sin(radians(90)));
  rotate(radians(0));
  text("90°",0,0);
  resetMatrix();
  translate(width-width*0.513+width/2*cos(radians(120)),(height-height*0.07129)-width/2*sin(radians(120)));
  rotate(radians(-30));
  text("120°",0,0);
  resetMatrix();
  translate((width-width*0.5104)+width/2*cos(radians(150)),(height-height*0.0574)-width/2*sin(radians(150)));
  rotate(radians(-60));
  text("150°",0,0);
  popMatrix(); 
}

Použité komponenty

Další podobné články

OVLÁDÁNÍ VÍCE RELÉ S NEOPIXEL RGB ARDUINEM

Kamarád mi poprosil o pomoc s tím že v současnosti potřebuje v jednom projektu ovládat čtyři reléové moduly, kdy jeden obsahuje šestnáct relátek které zakoupil v [1] a již má hotovou část zapojení přípravku, s tím že časem by chtěl ovládání z PC „po otestování“, ovládat diody pomocí tabletu nebo chytrého telefonu. Na tento počet ovládání relé je potřeba 64 ovládacích pinů, což ani ARDUINO MEGA 2560 s potřebou dalších vstupů které budou potřeba není možné použít. Po návrzích s posuvnými registry kterých by bylo potřeba osm kusů a složitosti zapojení mi napadlo použít pásek NEOPIXEL  s RGB led diodami kdy na ovládání stačí jeden výstup z ARDUINA. Tak že pro pokusy co a jak půjde použít, jsem použil modul relátek osazený dvěma relátky, modul s MOSFET tranzistorem, Neopixel pásek s osmi RGB led diodami WS2812B, fototranzistor GL5528 a bluetooth JDY-33 pro komunikaci s tabletem chytrým telefonem vše zakoupené v [1]. Napsané programy jsou celkem dva jeden pouze pro ovládání Neopixel s osmi RGB led diodami, druhý pak umožňuje ovládat maximálně 255 RGB led použitých v Neopixel pásku. Oba programy umožňují ovládat libovolnou RGB diodu nebo více RGB led diod na Neopixel pásku včetně barev a dají se upravit dle potřeby. Přípravek může posloužit při vlastních pokusech s RGB LED Neopixel pásky a zároveň doplňuje články v [2]. Ovládání RGB diod je zde řešeno s ARDUINO NANO je možné použít i ARDUINO UNO. Programové ovládání RGB led diod na Neopixel pásku je dle požadavků kamaráda.

Senzor oxidu uhelnatého MQ-9

Senzor reaguje nejvíce na oxid uhelnatý (CO) ale i na hořlavé plyny metan a propan. Aktivním prvkem tohoto senzoru je tenká vrstva SnO2, jejíž odpor se mění s koncentrací zmíněných plynů.